

Connecting Custom
Services to the
YAWL Engine

Beta – 7 Release

Document Control

Date Author Version Change

25 Feb 2005 Marlon Dumas,
Tore Fjellheim,
Lachlan Aldred

0.1 Initial Draft

3 March 2006 Lachlan Aldred 0.1.1 General Revisions

Preface

This document describes the key concepts behind designing and
building custom Web services for YAWL.

Contents

Document Control.. ii
Preface.. ii
This document describes the key concepts behind designing and
building custom Web services for YAWL... ii
Contents ... ii
Introduction.. 1
Custom YAWL Services.. 1
Step 1 – Initial Setup:... 2
Step 2 – Implementing method handleEnabledWorkItemEvent: 3
Step 3 (optional) – Implement handleCancelledWorkItemEvent() .. 5
Step 4 – Deploy the custom service in a Java servlet container 6
Step 5 – Register the service with the engine 7
Step 6 – Write and deploy a process definition that uses the service 8
Example: The YAWL WSInvoker... 8

Introduction

An important point of extensibility of the YAWL system is its
support for interconnecting external applications with the workflow
execution engine using a service-oriented approach. This enables
running workflow instances and external applications to interact with
each other in order to delegate work or to signal the creation of work
items or a change of status of existing work items. This document
briefly describes the mechanisms for achieving this interconnection.

External applications, exposed as services, can interact with the
YAWL engine in two different ways:

1. Directly, by means of XML messages exchanged over
HTTP. Services connected in this way are called custom YAWL
services.
2. Indirectly, through the YAWL Web Services Invoker
(YAWL WSInvoker); the YAWL engine communicates with the
YAWL WSInvoker which then invokes an operation of an external
service using SOAP (for example).

The former mechanism is more general than the latter. However, the
latter mechanism may be easier to use in the case where the
execution of a task instance requires a service operation to be
invoked in a synchronous way and the service interface has been
described in WSDL. The YAWL Engine Beta 3 comes with two
sample external services: A “Time Service” which illustrates the
former mechanism, and the “Barnes & Noble” service bridge,
corresponding to the latter mechanism.

The following sections briefly explain each of these mechanisms in
turn.

Custom YAWL Services

Custom YAWL services interact with the YAWL engine through
XML/HTTP messages processed by certain endpoints, some located
on the YAWL engine side and others on the service side. In
principle, custom YAWL services can be developed in any
programming language and can be deployed in any platform capable
of sending and receiving HTTP messages. Custom YAWL services
are registered with the YAWL engine by specifying their location, in
the form of a “base URL”. Once registered, a custom service may
receive XML messages from the engine at endpoints identified by
URLs derived from the base URL provided at registration. On the
other hand, the custom service can send XML messages to the
YAWL engine at endpoints identified by URLs that the custom
service is assumed to know. At present, the URL encoding used, the

types of HTTP operations used, and the schema and semantics of the
exchanged messages are not yet documented. However, a collection
of Java classes included in the YAWL engine distribution can be
used to implement the required endpoints without requiring any
knowledge about the URL encoding and XML formatting used.
Specifically, the following classes can be reused to develop custom
YAWL services:
• au.edu.qut.yawl.engine.interfce.
InterfaceB_EnvironmentBasedServer (Note: this class is a Java
servlet)
• au.edu.qut.yawl.engine.interfce.
InterfaceB_EnvironmentBasedClient
• au.edu.qut.yawl.engine.interfce.InterfaceBWebsideCont
roller

A custom YAWL service can be developed by extracting these
classes (and their dependent classes) from the YAWL engine
distribution and following the steps outlined below. Before applying
these steps, it is important first to understand the purpose of the
interactions in which the YAWL engine and a YAWL custom
service can engage. Four of these interactions are particularly
relevant here:

1. The interaction that the engine initiates to indicate that a new work
item has been created (i.e. it is enabled). This message contains the
identifier of the work item and related data.1

2. The interaction that the service initiates to check-out the work item
(i.e. to move the work item from the “enabled” to the “executing”
states).

3. The interaction that the engine may initiate to indicate that a work
item in the “in progress” state should be cancelled.2

4. The interaction that the custom service initiates to check a work item
back into the engine thus indicating that the work item has been
completed (i.e. to moves work item from the “in progress” to the
“completed” state).

Step 1 – Initial Setup:

Create a class which extends the InterfaceBWebSideController
abstract class. You will need to implement three methods:

• public void handleEnabledWorkItemEvent(WorkItemRecord
workItemRecord)

1 In this document, we only cover “push-style” YAWL services, whereby the
interactions to announce a new work item and to cancel a work item are initiated
by the engine. YAWL Beta 3 also supports a “pull-style” interaction, whereby the
responsibility of finding out which work items are available is left to the service
(i.e. the service must initiate all interactions). The YAWL worklist is an example
of a “pull-style” YAWL service (but we do not document it here).
2 In the current “work item lifecycle” model of YAWL does not contemplate the
possibility of resuming previously cancelled work items.

This method is invoked when a new work item is created and thus
placed in the enabled state (i.e. when the interaction #1 above
occurs).

• public void handleCancelledWorkItemEvent(WorkItemRecord
workItemRecord)
This method is invoked when an enabled or “in progress” work item
is cancelled by the engine (e.g. due to a cancellation occurring in the
YAWL workflow). In principle, after this method has been invoked,
the custom service should not check-in/check-out the item, and if the
work item is in progress, processing should be stopped.3

• public void setRemoteAuthenticationDetails(String userName,
String password, String httpProxyHost, String proxyPort)
This method is used for connecting to the engine over a firewall,
through a proxy server.

Step 2 – Implementing method handleEnabledWorkItemEvent:

It is your job as developer of the custom YAWL service to ensure
that a work item is checked out of the engine, and once the task is
complete to return the result back into the engine. The way you
achieve this is up to you. One useful technique is to implement the
handleEnabledWorkItemEvent method so that it checks out the
enabled work item, performs the desired task, and then checks the
work item back into the engine. The following explanation assumes
that this is what you intend to do.

This method should first try to check if there is a connection from
the custom service to the engine. This is done by calling the
checkConnection method of the superclass.

checkConnection(sessionHandle)

If this method returns ‘false’, the method implementation should call
the connect method, with a username and password acceptable to the
engine. This returns a sessionHandle that allows this service to
connect to the engine.

After the connection has been established, the method checkOut may
be invoked to check out the enabled work item. This method requires
the enabled workItem’s ID which is retrieved by using its getID
method. The method checkOut returns a diagnostic string. In order
to determine if the checking out was successful one can pass the
diagnostic string into the successful method. If it returns true then a
new work item was created in the engine with state ‘executing’.
Hence processing can start.

3 Note that the current version of YAWL does not support any notion of “atomic execution”, so no
“rollback” is required when a work item is cancelled.

Each enabled workItem decomposes into one or more child tasks.
Therefore checking out the enabled work item will put one of the
children into the state ‘executing’. This work item is checked out of
the engine. However the remaining children of the enabled work
item will not be checked out yet. Hence they will exist in a state in
between ‘enabled’ and ‘executing’. This is the state ‘fired’. The
state of ‘fired’ means that the task is not yet checked out of the
engine (i.e. ‘executing’) but it has moved beyond the state of
enabled4. Hence it may be necessary to check out the ‘fired’
children in additionally. This can be done by calling the method
getChildren which returns a list (class java.util.List) of
WorkItemRecord objects. This list will contain the children of the
enabled work item, and one of those children will be in the state
‘executing’. The others will be only fired. It is recommended that
you check out all children in the “fired” state.

List children =
 getChildren(enabledWorkItem.getID(), sessionHandle);
 for (int i = 0; i < children.size(); i++) {
 WorkItemRecord itemRecord =

(WorkItemRecord) children.get(i);
 if(WorkItemRecord.statusFired.equals(

itemRecord.getStatus())) {
 checkOut(itemRecord.getID(),
_sessionHandle);
 }
 }

After checking out all child workItems, the custom service can
execute the actual work. For this purpose, the custom service will
probably need to retrieve the input Data (if any) from the work item.
The code snippet shown below (extracted from the Time Service)
illustrates how this can be done:

List executingChildren =
getChildren(enabledWorkItem.getID(), _sessionHandle);
for (int i = 0; i < executingChildren.size(); i++) {

WorkItemRecord itemRecord =
(WorkItemRecord) executingChildren.get(i);
Element datalist = itemRecord.getDataList();
String dataText =
datalist.getChildren().get(0).getText();

}

Looking at this code, it can be seen that first, all the children of the
work Item are obtained. Then for each child we retrieve the datalist.
The datalist is an Element (encoded in JDOM) which can be parsed

4 The YAWL paper (http://www.citi.qut.edu.au/pubs/technical/yawlrevtech.pdf)
discusses the full semantics of the YAWL language. For more information about
enabled tasks, fired tasks, and executing tasks refer to the sections about multiple
instances of an atomic task.

to locate the correct data. In the example of the Time Service, there
is only one input is a time duration. After the data has been retrieved,
the execution can start. When the execution completes, the system
should call the checkIn method on the child which has finished.

When the execution finishes. The system must call the “checkIn”
method on the child which has finished. This method takes four
parameters.
1) The identifier of the work item which was checked out
2) The input data of this work item
3) The output data of this work item
4) The session handle.

The input data of the work item is stored in the work item itself. The
output data must be created by the service. These elements are
described as XML Strings where the root element is the
decompositionID and the inner elements describe the data. The
decomposition ID is found in the task information. This can be
retrieved by calling:

getTaskInformation(specificationID,
 taskID(),
 _sessionHandle);

An example of checking in a work item is shown below. The
example is from the Time Service.

TaskInformation taskinfo =
getTaskInformation(itemRecord.getSpecificationID(),
 itemRecord.getTaskID(),
 _sessionHandle);

String start = "<" + taskinfo.getDecompositionID() +
">";
String end = "</" + taskinfo.getDecompositionID() +
">";

XMLOutputter outputter = new XMLOutputter();

checkInWorkItem(itemRecord.getID(),
outputter.outputString(itemRecord.getDataList()),
 start+end,
 _sessionHandle);

Step 3 (optional) – Implement handleCancelledWorkItemEvent()

Sometimes, a work item in the “executing” state (i.e. work items that
have been checked out but not yet checked in) needs to be cancelled

because the corresponding task is in the cancellation set of another
task, and this latter task moves to the “completed” state. In this
situation, the method handleCancelledWorkItemEvent will be
invoked so that the custom YAWL service can optionally stop
executing the work item. The custom YAWL service could
optionally do nothing:

public String
handleCancelledWorkItemEvent(WorkItemRecord
workItemRecord) {
 return "Cancelled";
}

Step 4 – Deploy the custom service in a Java servlet container

Once we have subclassed InterfaceBWebSideController and
implemented its abstract methods we need to create a web
application that is able to receive events from the engine when tasks
become enabled and/or cancelled. The YAWL Servlet
InterfaceB_Server_WebSide is able to act as the event handler for
messages coming from the YAWL engine. However to pass these
events successfully to your code it needs to be told exactly which
class (which is a subclass of InterfaceBWebSideController) to load.
We can describe this for Tomcat by using the web.xml format shown
later.

In the case of Tomcat, the code for the custom YAWL service will
need to be grouped in a “war” file and deployed in the webapps
directory of the Tomcat installation. In addition, a deployment
descriptor (web.xml file) needs to be included inside a directory
labelled ‘WEB-INF’ (for details, see Tomcat’s documentation).

As an example, the web.xml file should be something like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <!-- General description of your web application -->
 <display-name> ... </display-name>
 <description> ... </description>

 <context-param>
 <param-name>InterfaceB_BackEnd</param-name>
 <param-value>
 http://localhost:8080/yawl/ib</param-value>
 <description>
 The URL of the engine's Interface B.
 </description>
 </context-param>

 <context-param>
 <param-name>InterfaceBWebSideController</param-name>
 <param-value>
 com.company.SubClassOfInterfaceBWebsideController
 </param-value>
 <description>
 The class name of the Interface B
 Server implementation.
 </description>
 </context-param>

 <servlet>
 <servlet-name>InterfaceB_Servlet</servlet-name>
 <description>
 Listens to notification of work items from the
 engine. Shouldn't need to change this.
 </description>
 <servlet-class>
au.edu.qut.yawl.engine.interfce.InterfaceB_EnvironmentBasedSe
rver</servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>InterfaceB_Servlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>30</session-timeout>
 <!-- 30 minutes -->
 </session-config>
</web-app>

In this web.xml file, it is important to note that:
1) The servlet class is set to InterfaceB_EnvironmentBasedServer.
This is the actual servlet which will be started.
2) The InterfaceBWebSideController parameter value is the name
of the class implementing the HandleEnabledWorkItemEvent
method discussed in Step 2.
3) The name of the .war file that you wrap your code in will
determine the URL that you use when you register your YAWL
service with the engine, in the next step. For example if your war
file is named ‘myCustomSerive.war’ then the URL registered in Step
5 could be http://localhost:8080/myCustomService.

Step 5 – Register the service with the engine

This can be done from the HTML interface of the YAWL engine,
under the “Administration” menu. In this page there is a list of
registered custom YAWL services, and a form for adding new ones.
During registration, the URL of the servlet that will handle incoming
events from the engine will need to be added exactly (see previous

section). In addition to this one may add some documentation
regarding what the service actually does (see Figure 1).

Then click on Add YAWL Service:

Figure 1: Admin page widget for adding custom YAWL services to engine.

Step 6 – Write and deploy a process definition that uses the
service

The YAWL editor can be used to directly link with your custom
YAWL services. See the editor manual for details about how to do
this.

Example: The YAWL WSInvoker

The YAWL WSInvoker is applicable in the case where an external
application (exposed as a service) needs to be invoked by the YAWL
engine to perform the work corresponding to a task instance. In this
mechanism, a task is decomposed to an invocation to a (web) service
operation described in a WSDL interface referenced in the process
description. When an instance of the task is enabled, the YAWL
WSInvoker retrieves the corresponding WSDL interface and using
the Apache Web Services Invocation Framework (WSIF),5 it
analyses it to determine how to invoke the service operation in
question. The operation invocation is then performed immediately
and accordingly, the task instance is moved from the enabled to the
processing state. When the operation invocation completes, the task
is moved to the completed state. Note that in the current version of

5 http://ws.apache.org/wsif

the YAWL WSInvoker, the operation invocation must be
synchronous (i.e. request/response), so this mechanism can not be
used to connect services to YAWL in an asynchronous way (for this
purpose, custom YAWL services must be introduced).

The following task decomposition, extracted from the
Barnes&Noble.xml in the YAWL distribution, shows how an
external web service can be invoked from through the YAWL
WSInvoker. When a work item is created for this task, the operation
getPrice of the Barnes&Noble (SOAP) web service is invoked, with
the ISBN as parameter.

<decomposition id="Get Price via WS"
xsi:type="WebServiceGatewayFactsType">
 <inputParam name="isbn">
 <type>xs:string</type>
 </inputParam>
 <outputExpression query="/data/return"/>
 <outputParam name="return">
 <type>xs:float</type>
 <mandatory/>
 </outputParam>
 <yawlService id="http://localhost:8080/yawlWSInvoker/">

<wsdlLocation>
http://www.xmethods.net/sd/2001/BNQuoteService.wsdl

</wsdlLocation>
 <operationName>getPrice</operationName>
 </yawlService>
</decomposition>

Note that, unlike custom YAWL services, services that are
connected to the engine through the YAWLWSInvoker do not need
to be registered with the YAWL engine through the Web-based
administration interface.

We can note that from the perspective of the YAWL engine, the
YAWLWSInvoker is just like any custom service, except that it is
part of the distribution of the YAWL engine and it does not need to
be registered as other custom services do. In particular, the code of
the YAWL WSInvoker (see package au.edu.qut.yawl.wsif and
especially class WebServiceController in this package) provides an
example of how to implement a (custom) YAWL service (in addition
to the “Time Service” example).

